Upcoming Talks

2021-12-08 11:00:00

Joyce Poon Max Planck Institute of Microstructure Physics and University of Toronto

Silicon integrated photonics for future “computing”

As the demands and forms of computers evolve, new hardware is needed to realize different types of computing interfaces. Foundry silicon photonics leverages the maturity of microelectronics manufacturing to fabricate photonic integrated circuits. Today, silicon photonics is mostly used in the short-wave infrared spectrum for fiber optic communication. I will discuss how foundry silicon photonics in the visible spectrum can be an enabling technology for future computing, addressing applications such as displays, neural implants, and quantum computing.

Speaker's Bio

Joyce Poon is the Managing Director at the Max Planck Institute of Microstructure Physics, Professor of Electrical and Computer Engineering at the University of Toronto, and an Honorary Professor in the Faculty of Electrical Engineering and Computer Science at the Technical University of Berlin. She currently serves as a Director-at-Large for Optica (formerly the Optical Society, OSA). She and her team specialize in integrated photonics on silicon. Prof. Poon obtained the Ph.D. and M.S. in Electrical Engineering from Caltech in 2007 and 2003 respectively, and the B.A.Sc. in Engineering Science (physics option) from the University of Toronto in 2002. Recognitions she has received include a Canada Research Chair (2012-2019), ECE Department Teaching Award (2017), OFC Top-Scored Paper (2017), the McCharles Prize for Early Research Career Distinction (2013), MIT TR35 (2012), and the IBM Faculty Award (2010, 2011). She is an Optica Fellow (formerly OSA).

2022-01-05 11:00:00

Thomas Krauss University of York

Beyond Q: The importance of the amplitude for nanophotonic resonances

Nanophotonic resonances have seen a sustained interest because of their ability to enhance light-matter interactions, with recent developments such as metasurfaces and bound states in the continuum (BIC) adding interest to the topic. Researchers typically aim to maximise the Q-factor as a measure for the interaction; this is true for both light emission, where Q/V (V: Volume) is the key parameter, but also for sensing, where QxS (S: Sensitivity) is the usual figure of merit. Here, we show that this picture can be overly simplistic and that it is essential to take losses and the resonance amplitude into account. Using sensors as an example, we present an ab-initio model and show that the performance is not optimised by simply maximising the Q, but by counterbalancing Q and amplitude. We compare different structures in light of this model and demonstrate high-sensitivity biological measurements with structures that achieve moderate Q but high resonance amplitude.  

Speaker's Bio

Prof Krauss achieved his first degree (“Diplom-Ingenieur”) in Cologne, Germany (1989), followed by a PhD in Electrical Engineering at Glasgow, UK 1992 on the topic of semiconductor ring lasers. He initiated the work on photonic crystals in the UK in 1993, a research field where he made pioneering contributions worldwide, spent a year at Caltech, Pasadena, CA in 1997 and became Professor of Physics at St Andrews, UK in 2000. He moved to the University of York, UK in 2012 to focus on light-matter interaction with biological systems, where he was also Strategy Champion “Technologies for the Future" 2015-2019. He has led major EU and UK research projects and currently holds a substantial research portfolio related to optical biosensors funded by EPSRC, the Wellcome Trust, and well supported by industry partners. His papers are well cited (h=90) and he is a Fellow of the Royal Society of Edinburgh, the Institute of Physics and the Optical Society. He was one of the founding editors of OSA's flagship journal Optica in 2014 and became its Deputy Editor in early 2020.

2022-02-02 11:00:00

Lorenzo Pavesi University of Trento

Physics and Applications enabled by integrated silicon photonic circuits

Here I will review few topics we are currently working on in the Nanoscience Laboratory of the University of Trento (http://nanolab.physics.unitn.it/). Specifically by using the silicon photonics platform we are working on non-hermitian photonics in taiji microresonators [1], on microresonator based time-delayed neural networks [2,3], on heralded single photon sources for MIR ghost spectroscopy [4] and on the use of single particle entanglement to produce self-testing quantum random number generators [5]. [1] Nonlinearity-induced reciprocity breaking in a single non-magnetic Taiji resonator arXiv:2101.06642 [2] Reservoir computing based on a silicon microring and time multiplexing for binary and analog operations arXiv:2101.01664 [3] Microring resonators with external optical feedback for time delay reservoir computing arXiv:2109.11486;A photonic complex perceptron for ultrafast data processing arXiv:2106.11050 [4] A silicon source of heralded single photons at 2 μm arXiv:2108.01031 [5] Certified quantum random number generator based on single-photon entanglement arXiv:2104.04452 Entropy certification of a realistic QRNG based on single-particle entanglement arXiv:2104.06092

Speaker's Bio

Lorenzo Pavesi is Professor of Experimental Physics at the Department of Physics of the University of Trento (Italy). He leads the Nanoscience Laboratory and director of the Quantum at Trento joint laboratory. He has directed 37 PhD students and more than 30 Master thesis students. His research activity concerned the optical properties of semiconductors. During the last years, he concentrated on Silicon based photonics where he looks for the convergence between photonics and electronics. He is interested in active photonics devices which can be integrated in silicon. Recent development is toward integrated quantum photonics and neuromorphic photonics. He is an ERC grantee. He is a frequently invited reviewer, monitor or referee for photonics projects by several grant agencies. He is an author or co-author of more than 500 papers, author of several reviews, editor of more than 15 books, author of 2 books and holds 9 patents. He is chief speciality editor of the section Optics and Photonics of Frontiers in Physics and founding editor of the series Photonic Materials and Applications, a joint initiative of SPIE and Elsevier. He is in the advisory board of Glass-to-Power and of Sybilla, two italian start-up. In 2001 he was awarded the title of Cavaliere by the Italian President for scientific merit. In 2010 and 2011 he was elected distinguished speaker of the IEEE- Photonics society. He is fellow of the IEEE, of SPIE, of AAIA and of the SIF.

2022-02-23 11:00:00

Vladimir M. Shalaev Purdue University

Hybrid Quantum Photonics

We will discuss some recent ideas and developments on how plasmonics and machine learning can be employed to dramatically speed up quantum process to make them immune to decoherence and how they can significantly improve the performance of quantum photonics devices and systems. Our recent discovery of single-photon emitters in technologically important SiN platform will be also discussed.

Speaker's Bio

Vladimir M. Shalaev, Scientific Director for Nanophotonics at Birck Nanotechnology Center and Distinguished Professor of Electrical and Computer Engineering at Purdue University, specializes in nanophotonics, plasmonics, optical metamaterials and quantum photonics. Prof. Shalaev has received several awards for his research in the field of nanophotonics and metamaterials, including the APS Frank Isakson Prize for Optical Effects in Solids, the Max Born Award of the Optical Society of America for his pioneering contributions to the field of optical metamaterials, the Willis E. Lamb Award for Laser Science and Quantum Optics, IEEE Photonics Society William Streifer Scientific Achievement Award, Rolf Landauer medal of the ETOPIM (Electrical, Transport and Optical Properties of Inhomogeneous Media) International Association, the UNESCO Medal for the development of nanosciences and nanotechnologies, and the OSA and SPIE Goodman Book Writing Award. He is a Fellow of the IEEE, APS, SPIE, MRS and OSA.

2022-06-08 11:00:00

Ryotatsu Yanagimoto Stanford University

Unraveling the Physics of Broadband Non-Gaussian Quantum Optics

Progress in the fabrication of ultra-low loss, highly nonlinear, and dispersion-engineered nanophotonics indicates the experimental capabilities are rapidly approaching the unprecedented regime of attojoule-per-pulse nonlinear optics. From the viewpoint of quantum optics, such strong nonlinearity suggest the potential to induce significant non-Gaussian quantum features, heralding a unique opportunity for all-optical quantum engineering and information processing using coherent dynamics of pulse propagation, e.g., soliton-based cubic phase gate. To understand and fully leverage the potential of broadband non-Gaussian quantum optics, however, it is essential to overcome the inherent challenges of modeling multimode non-Gaussian quantum states, which naïvely requires exponentially large Hilbert space. In this talk, we present recent developments of model reduction techniques to realize tractable numerical studies of non-Gaussian quantum pulse propagation, highlighting the physical insights that the reduced models provide. As constituent examples, we study Kerr soliton and pulsed squeezing, showing the emergence of physics beyond conventional Gaussian quantum optics, e.g., Wigner function negativities in the phase space. References [1] R. Yanagimoto, E. Ng et al., “Onset of non-Gaussian quantum physics in pulsed squeezing with mesoscopic fields”, arXiv:2111.13799. [2] R. Yanagimoto et al., “Efficient simulation of ultrafast quantum nonlinear optics with matrix product states”, Optica 8, 1306 (2021). [3] R. Yanagimoto, T. Onodera et al., “Engineering a Kerr-Based Deterministic Cubic Phase Gate via Gaussian Operations”, Phys. Rev. Lett. 124, 240503 (2020).

Speaker's Bio

Ryotatsu Yanagimoto is a senior Ph.D. student in the group of Prof. Hideo Mabuchi at Stanford University. His research interest spans AMO physics in general, while he focuses on the science of quantum devices at present. He currently works on the theoretical research of broadband non-Gaussian quantum optics, aiming at understanding and engineering coherent multimode dynamics of photons on nonlinear nanophotonics beyond the conventional framework of Gaussian quantum optics. Previously, he worked at the University of Tokyo and RIKEN on experimental research of optical lattice clocks, where he received a B.E. He is a recipient of a Masason fellowship and a Stanford Q-FARM Ph.D. fellowship.
The Optics and Quantum Electronics Seminar Series is supported by the Research Laboratory of Electronics (RLE) and the Department of Electrical Engineering and Computer Science (EECS).

iCal calendar file